
hawkeslib Documentation

Caner Turkmen

Jun 03, 2022





Contents:

1 Introduction 3
1.1 About hawkeslib . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Getting Started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Tutorial: Hawkes Processes 5
2.1 Some Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Temporal Point Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Poisson Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Self-exciting Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 Hawkes Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Example: Modeling Seismic Activity 13
3.1 Estimating Hawkes process parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Bayesian inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 API Reference 17
4.1 Univariate Hawkes Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Multivariate Hawkes Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3 Poisson Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Indices and tables 19

i



ii



hawkeslib Documentation

hawkeslib, Python library for fast parameter estimation in vanilla Hawkes process models.

Contents: 1

https://travis-ci.org/canerturkmen/hawkeslib
https://opensource.org/licenses/MIT


hawkeslib Documentation

2 Contents:



CHAPTER 1

Introduction

1.1 About hawkeslib

hawkeslib started with the ambition of presenting easy-to-use, well maintained implementations of plain-vanilla
Hawkes (self-exciting) processes12, a form of evolutionary temporal point processes that is increasingly put to use
in a variety of domains.

Some features of the library are

• Fast. most algorithms are implemented in Cython, cutting away most of the Python overhead for likelihood
computations and parameter estimation algorithms that require scanning the data.

• Easy-to-use. Models implement a familiar, common interface.

• Good for beginners. The library implements a variety of plain vanilla self-exciting processes such as univariate
and multivariate Hawkes processes with exponential delay densities, Poisson processes, and related Bayesian
inference machinery.

In the future, we hope to add several extended models.

1.2 Installation

Cython (>=0.28) and numpy (>=1.14) must be installed prior to the installation.
1 Hawkes, Alan G. “Point spectra of some mutually exciting point processes.” Journal of the Royal Statistical Society. Series B (Methodological)

(1971): 438-443.
2 Bacry, Emmanuel, Iacopo Mastromatteo, and Jean-François Muzy. “Hawkes processes in finance.” Market Microstructure and Liquidity 1.01

(2015): 1550005.

3

https://travis-ci.org/canerturkmen/hawkeslib
https://opensource.org/licenses/MIT


hawkeslib Documentation

$ pip install -U Cython numpy
$ pip install hawkeslib

Currently, the library only supports python 2.7.

1.3 Getting Started

The examples/ folder contains Jupyter notebooks that demonstrate basic use cases, in addition to the tutorial and
example provided in these docs.

References

4 Chapter 1. Introduction



CHAPTER 2

Tutorial: Hawkes Processes

Here we present an informal introduction to the ideas and theory behind self-exciting (Hawkes) processes. We assume
the reader has some familiarity with statistics and machine learning. However, rather than walking the reader through
heavy math, we try to highlight the intuition of Hawkes and its potential application areas.

2.1 Some Background

Many natural phenomena of interest, to machine learning as well as other disciplines, include time as a central dimen-
sion of analysis. A key task, then, is to capture and understand statistical relationships along the timeline. “Workhorse”
models addressing temporal data are collected under time-series analysis. Such models often divide time into equal-
sized buckets, associate quantities with each such bucket on which the models operate. This is the discrete-time for-
malism that appears in many models familiar in machine learning such as Kalman filters and hidden Markov models,
as well as common models in econometrics and forecasting such as ARIMA or exponential smoothing.

Say we are provided the timestamps of all “price jumps” in a financial market. Exploring this data set from a temporal
standpoint, we often take the path of “aggregating” statistics on a uniform time grid, and running models on these
aggregates. Concretely, take “millisecond” timestamps of financial market price events:

%matplotlib inline
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt

# here are the "timestamps"
df = pd.read_csv("example_data_top4.csv", header=None)
ar = np.array(df.loc[:, 1])

print ar

[ 56 56 59 ... 8199797 8199798 8199984]

Below, we aggregate them to 1 second intervals –collecting the number of “events” at each interval– to arrive at a
familiar “time-series” plot.

5



hawkeslib Documentation

# here is the "aggregated" time series plot
bc = np.bincount(np.floor(ar / 1000.).astype(int))

plt.figure(figsize=(15,2))
plt.title("Number of Price Jumps, by 1sec intervals")
plt.xlabel("seconds")
_ = plt.plot(bc[:100], 'k-')

There are many reasons to prefer discrete-time models. First, data may only be collected by a real-world observer
(system) in uniform grids of time – and no more granular data is available. Then, of course, more sophisticated models
are of little use. Second, these models might be just enough to explain temporal relationships.

However, many real-world data are available with timestamps. That is, they correspond to discrete events in continuous
time. The analyst’s job, then, is to better explain granular temporal relationships, and answer questions like “when is
the next event going to occur?”, or “how many events do we expect in the next 5 minutes?”. By basing the analysis
on a formalism of continuous time (events can occur at any time) and discrete events (occurrences are instantaneous)
, the answers to such questions are unlocked. Furthermore, the framing of the analysis does not depend on arbitrary
discretizations of data, that may well lead to loss of valuable information.

Plotting the occurrences themselves, this is more intuitive. Each “point” in the graph is a unique data point, and an
arbitrary time “grid” would lead to loss of information.

plt.figure(figsize=(15,2))
plt.title("Price jumps")
plt.xlabel("milliseconds")
_ = plt.plot(ar[:100], np.ones(100), 'k.')

2.2 Temporal Point Processes

For dealing with the data above, we will need a few definitions. Stochastic processes are defined as (often infinite)
collections of random variables. We will also equip this collection with an index set. For instance, formalizing a
model for the “discrete-time” data above, we could write {𝑋𝑡}∞𝑡=0, 𝑡 ∈ Z+. Here 𝑋𝑡 make up the collection while
Z+ is the index set. The specific dependence (or rather, independence) structure, and other parametric assumptions of
relationships among {𝑋𝑡} determine the stochastic process. Note here that a random variate, or a realization of the
process is the entire trajectory determined by values taken by all 𝑋𝑡 (often part of which we observe).

Things are slightly more interesting when the index set is R. Interpreting the index set as time again, we have arrived
at continuous-time processes. Each realization from the process now completely determines a function on domain R.

6 Chapter 2. Tutorial: Hawkes Processes



hawkeslib Documentation

In machine learning, a Gaussian process is one such example. A staple of quantitative finance, the Wiener process
(Brownian motion) is another example.

ar_bm = np.cumsum(np.random.randn(1000) * 0.5**2)
plt.figure(figsize=(15,2))
plt.title("Brownian Motion")
_ = plt.plot(ar_bm, 'g-')

Drawing realizations from both Gaussian and Wiener processes (a stylized example above), we end up with functions
𝑓 : R → R. For our purposes, of modeling discrete events, let us restrict this family of possible functions to a special
class of step functions defined on R. Namely, we will deal with functions 𝑁 : R+ → Z+, which are step functions
such that 𝑠 > 𝑡 implies 𝑁(𝑠) ≥ 𝑁(𝑡). We call such processes counting processes.

One possible counting process realization is presented below. Intuitively, the name already suggests one interpretation
close to what we are looking for. We can simply take 𝑁(𝑡) to correspond to the “number of occurrences” up to time
𝑡. This also suggests that with every counting process, we can associate a probability distribution over points on a
timeline. This correspondence is also represented in the figure below. (A technical note here. In making this jump
from counting processes to points, we will assume hereforth that no two points coincide, almost surely. In practice,
this is rarely an issue.)

This is one way to define temporal point processes, a probability distribution such that each draw is a collection of
points on the real line (often the “timeline”). Each “point” will correspond to an “event occurrence” in our example
above, and we will use these theoretical devices to explore how “event occurrences” are dispersed throughout time.

ar_pp = sorted(np.random.rand(np.random.poisson(20)) * 100)
f = plt.figure(figsize=(15,2))

plt.step(ar_pp, np.cumsum(np.ones_like(ar_pp)))
plt.ylabel("$N(t)$")
plt.xlabel('$t$')
_ = plt.plot(ar_pp, np.zeros_like(ar_pp), 'k.')

2.3 Poisson Process

We start with the simplest temporal point process, the Poisson process. Poisson processes have been described as the
simplest process, the process with complete randomness1, or by Robert Gallager as “the process for which everything
we could wish to be true, is true”.

1 Daley, D. J., and D. Vere-Jones. “An Introduction to the Theory of Point Processes: Volume I: Elementary Theory and Methods.”

2.3. Poisson Process 7



hawkeslib Documentation

The Poisson process is characterized by complete independence. Other than the point process being simple (no two
points coincide), the defining property of Poisson processes is as follows:

The number of occurrences on any two disjoint intervals is independent

The following property is often given in the definition of Poisson processes. Surprisingly, this property is in fact a
consequence of the property above (and some other more technical assumptions).

The number of occurrences on an interval 𝐴 follows the Poisson distribution,

𝑁(𝐴) ∼ 𝒫≀(𝜉(𝐴))

Here we have let 𝑁(𝐴) denote the number of points on the interval A, which is itself a random variable of course. 𝒫≀
denotes the Poisson distribution. 𝜉 is a bit more tricky. It is a measure on R, such that it takes nonnegative values,
satisfies 𝜉(∅) = 0, and the sum of measures of disjoint sets is equal to the measure of the union of such sets. For our
purposes, however, let us take

𝜉(𝐴) =

∫︁
𝐴

𝑑𝑡𝜆(𝑡),

where

𝜆(𝑡) = lim
Δ𝑡↓0

∆𝑡−1E𝑁(𝑡, 𝑡 + ∆𝑡) (2.1)

= lim
Δ𝑡↓0

∆𝑡−1P{𝑁(𝑡, 𝑡 + ∆𝑡) > 0}.(2.2)

We define the function 𝜆, the intensity function. For those familiar with probability theory, it should resemble the
density function. One way to think about it is that 𝜆(𝑡) defines (in the limit) the probability that there is an occurrence
in the infinitesimal interval after time 𝑡. So the higher 𝜆(𝑡), the higher the probability of observing points in and around
𝑡 (assuming 𝜆(𝑡) is smooth and nice). Let us finally note that the equality above is possible due to our assumption of
simplicity – no two points can land on this infinitesimal interval.

Let’s take a step back and recap.

• We define a Poisson process with a function 𝜆(𝑡) > 0,∀𝑡.

• Say we have two intervals, 𝐴,𝐵 ⊂ R. The number of occurrences in these intervals will be Poisson distributed
with 𝑁(𝐴) ∼

∫︀
𝐴
𝜆(𝑡)𝑑𝑡, and 𝑁(𝐵) ∼

∫︀
𝐵
𝜆(𝑡)𝑑𝑡.

• Most importantly, 𝑁(𝐴), 𝑁(𝐵) are independent variables for all 𝐴 ∩𝐵 = ∅.

• Higher intensity functions 𝜆(𝑡), as expected, are associated with higher probabilities of event occurrences.

As a concrete example, take the following draws from a Poisson process with 𝜆(𝑡) = exp(sin 𝑡))

a = np.linspace(0, 100, 10000)
lt = np.exp(np.sin(a))

plt.figure(figsize=(15, 2))
plt.plot(a, lt, 'b-')
plt.yticks([])

for k in range(3):
count = np.random.poisson(3 * 100)
smp = [x for x in sorted(np.random.rand(count) * 100) if np.random.rand() * 3 <

→˓np.exp(np.sin(x))]
plt.plot(smp, np.ones_like(smp) * -1 * k, 'k.')

8 Chapter 2. Tutorial: Hawkes Processes



hawkeslib Documentation

Above, the blue line represents the intensity function 𝜆(𝑡), while each row of black dots is a draw from the Poisson
process. Note how the dots have a higher tendency to appear near “peaks” of the intensity function.

That being said, however, the appearance of dots is completely independent. Informally, given 𝜆(𝑡), each event occurs
independently and is not affected by whether there are other events in its vicinity.

An important special case of the Poisson process is when the intensity function is constant, i.e. 𝜆(𝑡) = 𝜇. We call this
special case a homogeneous Poisson process, and it is further characterized by stationarity. Informally, the probability
that a point occurs in the vicinity of 𝑡 is constant, making it equally likely for points to appear anywhere along the
timeline. Concretely, samples from this process would look like (for 𝜆(𝑡) = 3):

a = np.linspace(0, 100, 10000)
lt = np.ones_like(a) * 3

plt.figure(figsize=(15, 2))
plt.plot(a, lt, 'b-')
plt.yticks([])

for k in range(3):
count = np.random.poisson(3 * 100)
smp = np.random.rand(count) * 100
plt.plot(smp, np.ones_like(smp) * -1 * k, 'k.')

We implement homogeneous Poisson processs in hawkeslib.PoissonProcess.

Poisson processes underlie many applications, for example in queueing theory. There, however, people or packets
arriving in a queue can reasonably be expected to obey independence. In many other applications, however, the
independence assumption fails basic intuition about the domain. For instance, major financial events are known to
draw (excite) others like them. Earthquakes not only occur stochastically themselves, but stochastically trigger others.
In these domains, we understand, that Poisson processes lead to an oversimplification. We must work with a more
expressive class of models.

2.4 Self-exciting Processes

Until now we used the real line on which we defined our point process only rather casually to represent time. The same
set R can be used to represent distance on a fault line, or depth for example; when carrying out a “cross-sectional”
analysis of earthquakes. Here, we will start assigning some meaning to time.

We are looking for ways to break the independence assumption and somehow let event occurrences depend on others.
A very natural way to do this is to let the “future” (the rest of the real line deemed not observed) depend on the past.
Concretely, on R, we will let 𝜆(𝑡) depend on the occurrences in [0, 𝑡).

2.4. Self-exciting Processes 9



hawkeslib Documentation

In Poisson processes, the intensity function 𝜆(𝑡) was deterministic. Here, let us introduce 𝜆*(𝑡), the conditional
intensity function. 𝜆*(𝑡) determines the probability of a point occuring in the infinitesimal interval after 𝑡, given the
events that have occurred until 𝑡 (the asterisk will serve as a reminder of this conditioning). In reality, 𝜆*(𝑡) is a
function of 𝑡, as well as the occurrences {𝑡𝑖|𝑡𝑖 < 𝑡}.

Let’s not get into details here, but it is a fundamental result in the general theory of temporal point processes1 that we
can take 𝜆*(𝑡), and under a set of mild conditions this will lead to a well-defined point process. Furthermore, such
a characterization will enable simplified calculations of likelihood and will be interpretable. See1 chap. 7 for further
details.

Processes defined as above have been called evolutionary, self-modulating, or conditional intensity point processes1,2.
In cases where a point occurrence only increases future 𝜆*(𝑡), another term is more appropriate: self-exciting.

2.5 Hawkes Processes

Hawkes processes3 are often the first and most popular example to evolutionary processes. The (univariate) Hawkes
process is defined by the conditional intensity function

𝜆*(𝑡) = 𝜇 +
∑︁
𝑡𝑖<𝑡

𝜙(𝑡− 𝑡𝑖).

Let’s take a minute to break this equation down. At any moment 𝑡, the conditional intensity function is at least 𝜇 > 0,
the background intensity. However, it also depends linearly on effects of events that have occurred before time 𝑡.
Namely, this dependence is through a triggering kernel function 𝜙(.), a function of the delay 𝑡 − 𝑡𝑖 between the
current time and the timestamp of the previous event. Note that 𝜙 is nonnegative (𝜙(𝑥) ≥ 0,∀𝑥 ≥ 0 and causal
𝜙(𝑥) = 0,∀𝑥 < 0. It is usually a monotonically decreasing function (such as exponential decay, or power-law decay).

Thinking the other way around, the function can be interpreted as follows. Each event that occurs stochastically at a
time 𝑡𝑖 adds additional intensity to the process. This added effect often decays throughout time (as governed by 𝜙). In
other words, every new occurrence excites the process, hence self-exciting.

The most commonly used kernel function is an exponential decay 𝜙(𝑥) = 𝛼𝛽 exp(−𝛽𝑥). Note that this factorized
form, with

∫︀
𝛽 exp(−𝛽𝑥) = 1, leads to a convenient interpretation. 𝛼 > 0 is known as the infectivity factor, and

defines the average number of new occurrences excited by any given occurrence. 𝛽 exp(−𝛽𝑥), on the other hand is
simply the exponential density function that governs the probability distribution of delays between events that excite
each other. This is why it is also called the delay density.

Below is a graphical representation of 𝜆*(𝑡). Observe how the intensity is stochastically excited by each new arriving
occurrence.

from hawkeslib import UnivariateExpHawkesProcess

mu, alpha, beta = .1, .2, .1
uv = UnivariateExpHawkesProcess()
uv.set_params(mu, alpha, beta)
smp = uv.sample(100)

lda_ar = [mu + np.sum(alpha * beta * np.exp(-beta * (x - smp[smp < x]))) \
for x in np.arange(0, 100, .1)]

plt.figure(figsize=(15,2))
plt.ylabel("$\lambda^*(t)$")
plt.xlabel("$t$")

(continues on next page)

2 Cox, David Roxbee, and Valerie Isham. Point processes. Vol. 12. CRC Press, 1980.
3 Hawkes, Alan G. “Point spectra of some mutually exciting point processes.” Journal of the Royal Statistical Society. Series B (Methodological)

(1971): 438-443.

10 Chapter 2. Tutorial: Hawkes Processes



hawkeslib Documentation

(continued from previous page)

plt.plot(smp, np.ones_like(smp) * .1, 'k.')
_ = plt.plot(np.arange(0, 100, .1), lda_ar, 'b-')

So far, we discussed “univariate” Hawkes processes. We could assume, however, that each event occurrence bears a
discrete mark or label from a finite set. Concretely, going back to our financial example, event occurrences can belong
to different types or assets. In this case, one could view the system not only as a single stochastic process, but a finite
array of interacting, or mutually-exciting temporal point processes.

Assume observed data is now available as a set of ordered pairs {(𝑡𝑖, 𝑐𝑖)} where 𝑡𝑖 ∈ R+ are the timestamps, and
𝑐𝑖 ∈ {0, 1, . . . ,𝐾} are identifiers for which process a given occurrence belongs to. We formalize a multivariate
Hawkes process using set of conditional intensity functions

𝜆*
𝑘(𝑡) = 𝜇𝑘 +

∑︁
𝑙

∑︁
𝑡𝑗<𝑡,𝑐𝑗∈𝑙

𝜙𝑙,𝑘(𝑡− 𝑡𝑗).

where 𝑙, 𝑘 ∈ {0, 1, . . . ,𝐾} Intuitively, now each process is not only self-excitatory but also excited by events from
other processes. Once again, it is common to take a factorized kernel of the form

𝜙𝑙,𝑘(𝑥) = 𝐴𝑙,𝑘𝜃 exp(−𝜃𝑥),

where now 𝐴 is interpreted as the infectivity matrix, and 𝐴𝑙,𝑘 is interpretable as the expected number of further type-𝑘
events that will be caused by events of type 𝑙.

Likelihood computation, parameter estimation and inference problems in the backdrop of Hawkes processes are not
trivial, but they are beyond the scope of this short introduction. See4,5 for extensive surveys with a more rigorous
treatment of Hawkes processes. Most implementations in this library, and their corresponding API documentation
refer to the standard terminology set out in these works.

References

4 Bacry, Emmanuel, Iacopo Mastromatteo, and Jean-François Muzy. “Hawkes processes in finance.” Market Microstructure and Liquidity 1.01
(2015): 1550005.

5 Laub, Patrick J., Thomas Taimre, and Philip K. Pollett. “Hawkes processes.” arXiv preprint arXiv:1507.02822 (2015).

2.5. Hawkes Processes 11



hawkeslib Documentation

12 Chapter 2. Tutorial: Hawkes Processes



CHAPTER 3

Example: Modeling Seismic Activity

One field where Hawkes processes have traditionally been popular is seismology. In this example, we look at fitting a
univariate Hawkes model to earthquakes.

%matplotlib inline
import requests
from lxml import html
from datetime import datetime as dt
import numpy as np
from matplotlib import pyplot as plt

Let’s start by scraping some data on recent earthquakes in and around Istanbul – where this tutorial was written. The
following short script uses requests, lxml and pandas to scrape some data from the “recent earthquakes” report
maintained by Bogazici University’s Kandilli Observatory, and whip it into shape for use.

res = requests.get("http://www.koeri.boun.edu.tr/scripts/lst9.asp")
tx = html.fromstring(res.content).xpath("//pre/text()")[0]
lines = tx.splitlines()[7:] # get rid of the headers

# take out timestamps and convert them to "hours since first event"
timestamps = [dt.strptime(l[:19], "%Y.%m.%d %H:%M:%S") for l in lines if "ISTANBUL"
→˓in l]
t = np.array([(x - ts[-1]).total_seconds() / 3600 for x in timestamps])[::-1]

3.1 Estimating Hawkes process parameters

Hawkes processes model self-excitement, systems where point (or event) occurrences excite, or increase the probability
of occurrence for, future points. Earthquakes fit this description. Indeed, they are known to trigger after-shocks.

Plotting occurrence times on the timeline, one thing we can expect of aftershock sequences is that they appear “clus-
tered” in time. This is intuitive, a “main” earthquake would occur stochastically (as it would occur in a Poisson
process), and the others in the cluster would follow closely after. We plot our data below to verify that this appears to
be the case. (We add some “jitter” on the y axis to make viewing easier).

13

http://www.koeri.boun.edu.tr


hawkeslib Documentation

plt.figure(figsize=(15,2))
plt.ylim([-5, 5])
plt.yticks([])
_ = plt.plot(t, np.random.rand(len(t)), 'k.')

We now move to fitting a (univariate) Hawkes process, using the hawkeslib.UnivariateExpHawkesProcess
class. Before we move on, let’s recap the interpretation of the parameters.

• mu is the background intensity rate, i.e. the intensity rate for the earthquakes that occur exogenously.

• alpha is the infectivity factor. It can be interpreted as the number of aftershocks, in expectation, to be triggered
by each earthquake.

• theta is the rate parameter of the exponential delay density. For example, theta equaling to 0.5 would mean
that on average 2 hours pass between the main earthquake and the aftershock.

Let’s fit the model.

%%time
from hawkeslib import UnivariateExpHawkesProcess as UVHP

uv = UVHP()
uv.fit(t)
print uv.get_params()

(0.04930555306217892, 0.30548369162341404, 5.150339498582191)
CPU times: user 1.48 ms, sys: 0 ns, total: 1.48 ms
Wall time: 1.44 ms

Interpreting the parameters, we conclude that earthquakes occur exogenously once every ~20 hours in Istanbul (here,
we call any registered seismic activity an “earthquake”). Each main shock results in 0.3 aftershocks on average, and
aftershocks occur with 1 / 5.15 = 0.194 delay or 12 minutes on average.

Having fit a model, hawkeslib allows sampling (unconditional) from the model, as well as evaluate likelihood (e.g.
for out-of-sample cross validation) for other data sets. Here, let’s take a few samples from the “earthquake timeline”
and use it to approximate the histogram for the number of tremors during a 24 hour time span in the city.

nr_shocks_sample = [len(uv.sample(24)) for x in range(100000)]
_ = plt.hist(nr_shocks_sample, bins=20)

14 Chapter 3. Example: Modeling Seismic Activity



hawkeslib Documentation

3.2 Bayesian inference

Having fit the model, we now move to quantifying uncertainty in the parameter estimates. In hawkeslib, we do
this by Bayesian inference in the univariate Hawkes model. Related functionality is implemented in hawkeslib.
BayesianUVExpHawkesProcess.

Below, we use hawkeslib to sample from the posterior distribution of parameters mu, alpha, and theta. We
then present “Bayesian credible intervals” for the parameters.

from hawkeslib import BayesianUVExpHawkesProcess as BUVHP

buv = BUVHP(mu_hyp=(1., 10.), alpha_hyp=(1., 1.), theta_hyp=(1., 10.))
trace = buv.sample_posterior(t, T=t[-1], n_samp=50000)

# compute the BCIs
print pm.stats.quantiles(trace["alpha"], [2.5, 97.5])
print pm.stats.quantiles(trace["theta"], [2.5, 97.5])

{2.5: 0.19881998542628126, 97.5: 0.45850986170997604}
{2.5: 2.9138895786443646, 97.5: 8.605057427283178}

We observe that, under small data the credible intervals around our parameters are relatively wide.

Let us end by noting that a more expressive model, one that takes into account earthquake magnitudes, would be
required for more realistic scenarios. Traditionally, this is a marked Hawkes process that’s known as ETAS, the
Epidemic-type Aftershock Sequence Model1.

References

1 Ogata, Yosihiko, Ritsuko S. Matsu’ura, and Koichi Katsura. “Fast likelihood computation of epidemic type aftershock-sequence model.”
Geophysical research letters 20.19 (1993): 2143-2146.

3.2. Bayesian inference 15



hawkeslib Documentation

16 Chapter 3. Example: Modeling Seismic Activity



CHAPTER 4

API Reference

4.1 Univariate Hawkes Processes

4.2 Multivariate Hawkes Processes

Multivariate Hawkes processes are those in which event occurrences assume discrete marks from a finite set of cardi-
nality K. Analogously, we can think of K distinct Hawkes processes running, that not only self-excite, but also excite
other processes (i.e. are mutually exciting).

4.3 Poisson Processes

For sake of completeness and comparability, we provide temporal Poisson processes (and a Bayesian variant) imple-
menting the PointProcess interface, just like Hawkes processes.

The same functionality as for Hawkes; such as computing log likelihoods (or posterior potentials), maximum likeli-
hood (or MAP) estimates of parameters, and posterior sampling are implemented. Note that due to the well-known
complete randomness property of Poisson processes, and also the use of a conjugate prior for the Bayesian case, these
methods are implemented just in a few lines of code.

17



hawkeslib Documentation

18 Chapter 4. API Reference



CHAPTER 5

Indices and tables

• genindex

• modindex

• search

19


	Introduction
	About hawkeslib
	Installation
	Getting Started

	Tutorial: Hawkes Processes
	Some Background
	Temporal Point Processes
	Poisson Process
	Self-exciting Processes
	Hawkes Processes

	Example: Modeling Seismic Activity
	Estimating Hawkes process parameters
	Bayesian inference

	API Reference
	Univariate Hawkes Processes
	Multivariate Hawkes Processes
	Poisson Processes

	Indices and tables

